

(1) ADG: Automotive and Discretes Group - ASD: Application Specific Device − IPAD™: Integrated Passive and Active Devices

PCI Product/Process Change Information

Frame modification and assembly flow standardization for Triacs and SCRs housed in D²PAK

Notification number:	ADG-DIS/17/10335	Issue Date	22/06/2017
Issued by	Aline AUGIS		I
Product series affected by the change		T1010H-6	G (TR)
		T1035H-6	G (TR)
		T1050-80	G (TR)
		T1050H-6	G (TR)
		T1205-600	OG-TR
		T1210-60	G (TR)
		T1210-800	OG-TR
		T1235-600	
		T1235-800	
		T1235H-6	
		T1250-600	
		T1250H-6	
		T1610-600	
		T1610-800	
		T1635-600	
		T1635-700	
		T1635-800	
		T1635H-6	
		T1650-600	
		T2035H-6	· · ·
		T2050H-6	
		T2535-600	
		T2535-800	
		T2550-120	•
		T3035H-6	
		T3050H-6	
		T810-600	
		T810H-60	
		T835-600	

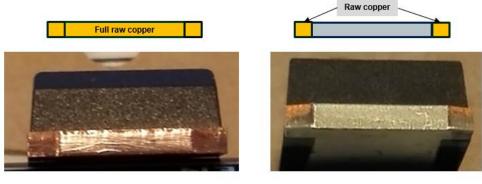
Issue date 22-06-2017 1/3

(1) ADG: Automotive and Discretes Group - ASD: Application Specific Device − IPAD™: Integrated Passive and Active Devices

T835H-6G (TR)
T850-6G (TR)
T850H-6G (TR)
TB16A6D
TB25A6D
TN1205H-6G (TR)
TN1215-600G (TR)
TN1215-800G-TR
TN1605H-6G (TR)
TN1625-1000G-TR
TN1625-600G-TR
TN2540-600G-TR
TN2540-800G-TR
TN4015H-6G (TR)

Reason for change

Production line modernization and assembly flow standardization.


Effects of change

Visual aspect

TOP view: no variation SIDE view:

- The current tab top edge is raw copper
- The new tab top edge is tinned on most the surface, its corners is are still raw copper

D²PAK tab side view

Current tab New tab

Frame modification

The frame shape has been modified so that a smaller zone of the tab needs to be cut on its top edge leading to less mechanical stress. Once the tab is cut, its shape is the same as before and the soldering of the top edge is improved.

Issue date 22-06-2017 2/3

STMicroelectronics ADG - ASD & IPAD™ Division¹ BU Protection and IPAD

 $(1) \ ADG: Automotive \ and \ Discretes \ Group - ASD: Application \ Specific \ Device - IPAD^{\text{TM}}: \ Integrated \ Passive \ and \ Active \ Devices$

tuanineation com	ualification complete date Week 26-2017					
orecasted sample	e availability					
Dundunt	family	Cub family	Commercial part	Aveilab	:::::::::::::::::::::::::::::::::::::::	
Product	tamily	Sub-family	Number	Availab	ility date	
TRIA	/C	D ² PAK	T2535-800G (TR)	Week 2	26 2017	
hange implemen	tation schoo	·				
Mange implemen		ed production start	Estimated first ship	ments		
	Lotimat		Week 30-2017			
	W	eek 29-2017	77 OOK 00 201			

Issue date 22-06-2017 3/3

Reliability Evaluation Report

Qualification of D²PAK frame modification and assembly flow standardization

Gener	al Information	Loc	ations
Product Lines	AC Switches	Wafer fab	STMicroelectronics Tours (FRANCE)
Products Description	SCR & TRIACS	Assembly plant	STMicroelectronics Shenzhen (CHINA)
Product Group	ADG	Reliability Lab	STMicroelectronics Shenzhen (CHINA)
Product division	ASD & IPAD		
Package	D²PAK	Reliability assessment	PASS
Maturity level step	Qualified		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
Rev. 1	June 20 th 2017	10	Mickael ALCANTARA	Julien MICHELON	ADG-DIS/17/10335

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPL	LICABLE AND REFERENCE DOCUMENTS	. 3
2	GLO	SSARY	. 3
3	RELI	ABILITY EVALUATION OVERVIEW	. 4
	3.1	OBJECTIVES	. 4
	3.2	CONCLUSION	. 4
4	DEVI	CE CHARACTERISTICS	. 5
	4.1	DEVICE DESCRIPTION	. 5
5	TEST	TS RESULTS SUMMARY	. 6
		TEST VEHICLES	
		TEST PLAN AND RESULTS SUMMARY	
6	ANNI	EXES	. 7
	6.1	DEVICE DETAILS	. 7
	6.2	Tests Description	a

June 20th, 2017 Report ID: 17073QRP

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description					
JESD 22	Reliability test methods for packaged devices					
JESD 47	Stress-Test-Driven Qualification of Integrated Circuits					
JESD 94	Application specific qualification using knowledge based test methodology					
MIL-STD-750C	Test method for semiconductor devices					

2 GLOSSARY

вом	Bill Of Materials			
DUT	Device Under Test			
SS	Sample Size			
тс	Temperature Cycling			
AC	Autoclave			
UHAST	Unbiased Highly Accelerated Stress Test			
ss	Sample Size			

June 20th, 2017 Report ID: 17073QRP

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

The objective is to certify the qualification D²PAK frame modification and assembly flow standardization in STMicroelectronics SHENZHEN.

3.2 Conclusion

Reliability plan has been fulfilled without exception. Reliability tests have shown that those devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the robustness of those products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 **Device description**

See referenced Datasheet document.

BTA24, BTB24, BTA25 BTA26, BTB26, T25

25 A standard and Snubberless™ triacs

Features

- High current triac
- Low thermal resistance with clip bonding
- High commutation (4 quadrant) or very high commutation (3 quadrant) capability
- BTA series UL1557 certified (File ref: 81734)
- Packages are RoHS (2002/95/EC) compliant

Applications

Applications include the ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits, etc., or for phase control operation in light dimmers, motor speed controllers, and silmilar.

The snubberless versions (BTA/BTB...W and T25 series) are especially recommended for use on inductive loads, due to their high commutation performances. The BTA series provides an insulated tab (rated at 2500 V_{RMS}).

Description

Available either in through-hole or surface-mount packages, the BTA24, BTB24, BTA25, BTA26, BTB26 and T25 triac series is suitable for general purpose mains power AC switching.

TO-220AB Insulated (BTA24)

RD91 TOP3 Insulated (BTA26)

D²PAK TOP3 (BTB26)

Table 1. Device summary

able 1. Device duminary								
Symbol	Parameter	BTA24 ⁽¹⁾	BTB24	BTA25 ⁽¹⁾	BTA26 ⁽¹⁾	BTB26	T25	Unit
I _{T(RMS)}	RMS on-state current	25	25	25	25	25	25	Α
V _{DRM} /V _{RRM}	Repetitive peak off-state voltage	600 / 800	600 / 800	600 / 800	600 ⁽²⁾ / 800	600	600 / 800	V
I _{GT} (Snubberless)	Triggering gate current	35 / 50	35 / 50	50	35 / 50	-	35	mA
I _{GT} (Standard)	Triggering gate current	-	50	50	50	50	-	mA

Insulated packages

TM: Snubberless is a trademark of STMicroelectronics

July 2007 Rev 10 1/12

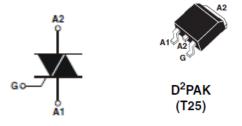
www.st.com

^{2. 600} V version available only with I_{GT} = 50 mA (Snubberless and Standard)

5 TESTS RESULTS SUMMARY

5.1 <u>Test vehicles</u>

Lot #	Part number	Package	Comments
Lot 1	T2535-800G-TR	D²PAK	Qualification Lot
Lot 2	T2535-800G-TR	D²PAK	Qualification Lot
Lot 3	T2535-800G-TR	D²PAK	Qualification Lot


5.2 Test plan and results summary

Tost	Cad und	Conditions	cc	Chama	Failure/SS				
Test	Std ref.	Conditions	33	33 Steps	SS Steps	33 Steps	Lot 1	Lot 2	Lot 3
тс	JESD22 A-104	-65 °C/+150 °C 1 cycle/h	231	500 cycles	0/77	0/77	0/77		
AC	JESD22 A-102	121°C, 2 bars 100% RH	231	96 h	0/77	0/77	0/77		
μHAST	JESD22-A110-B	133°C ; 85% RH	231	96h	0/77	0/77	0/77		

6 ANNEXES

6.1 **Device details**

6.1.1 Pin connection

6.1.2 Package outline/Mechanical data

Table 7. D²PAK dimensions

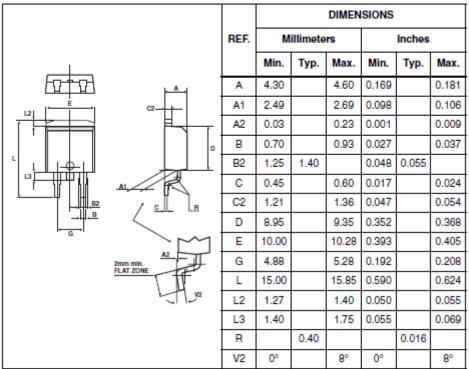
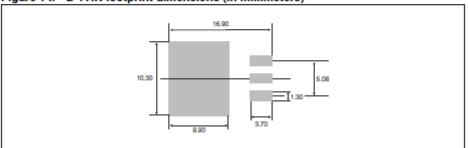



Figure 14. D²PAK footprint dimensions (in millimeters)

6.2 Tests Description

Test name	Description	Purpose						
	Die-oriented test							
	Package-oriented test							
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.						
uHAST	The device is biased under 130°C 85% RH during 96 hours, or equivalent 110°C 85% RH during 264 hours, minimizing its internal power dissipation.	The Highly-Accelerated Temperature and Humidity Stress Test is performed for the purpose of evaluating the reliability of non-hermetic packaged solid-state devices in humid environments. It employs severe conditions of temperature, humidity, and bias which accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it. The stress usually activates the same failure mechanisms as the "85/85" Steady-State Humidity Life Test (THB).						
AC Autoclave	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical Contamination and package hermeticity.						

6.3 <u>List of products involved in this qualification</u>

T1010H-6G (TR)

T1035H-6G (TR)

T1050-8G (TR)

T1050H-6G (TR)

T1205-600G-TR

T1210-6G (TR)

T1210-800G-TR

T1235-600G (TR)

T1235-800G-TR

T1235H-6G (TR)

T1250-600G-TR

T1250H-6G (TR)

T1610-600G-TR

T1610-800G-TR

T1635-600G (TR)

T1635-700G-TR

T1635-800G-TR

T1635H-6G (TR)

T1650-600G-TR

T1650H-6G (TR)

T2035H-6G (TR)

T2050H-6G (TR)

T2535-600G (TR)

T2535-800G (TR)

T2550-12G (TR)

T3035H-6G (TR)

T3050H-6G (TR)

T810-600G-TR

T810H-6G (TR)

T835-600G (TR)

T835H-6G (TR)

T850-6G (TR)

T850H-6G (TR)

TN1205H-6G (TR)

TN1215-600G (TR)

711/2/3 0000 (11

TN1215-800G-TR TN1605H-6G (TR)

TN1625-1000G-TR

1111025-1000G-11

TN1625-600G-TR TN2540-600G-TR

TN2540-800G-TR

TN4015H-6G (TR)